Li, Yang aka. Young
( regular script: ,
small seal script: )
Curriculum Vitae
 2010  2015, Ph.D. in Nuclear Physics, Iowa State University, "ISU", Ames, Iowa, US.
 2006  2010, B.S. in Physics, University of Science & Technology of China, "USTC", Hefei, China
 2003  2006, No. 2 Middle School , Shijiazhuang , Hebei , China
Office: A522 Zaffarano
Tel:
Email:
Tech Blogs:
(English) ,
(Chinese)
Social Media: (Twitter, Weibo, Wechat)
Research Areas:
Nuclear Physics (NonPerturbative QCD, LightFront Quantization, Hadronic Physics),
Computational Physics,
Quantum Measurement
Dissertation: Ab initio approach to quantum field theories on the light front (2015).
Ph.D. Advisor:
Prof. James P. Vary
Current Projects:
 Basis LightFront Quantization

Fock Sector Dependent Renormalization
Publications:
List of Publications
INSPIRE me
Journal Articles:
 Yang Li, P. Maris, X. Zhao, and J.P. Vary, Heavy Quarkonium in a Holographic Basis. Phys. Lett. B 758, 118 (2016); [arXiv:1509.07212 [hepph]]
 L. Adhikari, Yang Li, X. Zhao, P. Maris, J.P. Vary, A.A. ElHady, Form Factors and
Generalized Parton Distributions in Basis LightFront Quantization. Phys. Rev. C 93, 055202 (2016); [arXiv:1602.06027 [nuclth]]

Yang Li, V.A. Karmanov, P. Maris, and J.P. Vary, Ab Initio Approach to the NonPerturbative Scalar Yukawa Model.
Phys. Lett. B 748, 278 (2015); [arXiv:1504.05233 [nuclth]]

P. Wiecki, Yang Li, X. Zhao, P. Maris, and J.P. Vary, Basis lightfront quantization approach to positronium.
Phys. Rev. D 91, 105009 (2015); [arXiv:1404.6234 [nuclth]]
 S. Wu, Yang Li, Weak Measurement beyond the AharonovAlbertVaidman formalism. Phys. Rev. A 83, 052106 (2011); [arXiv:1010.1155 [quantph]]
Proceedings:

J.P. Vary, L. Adhikari, G. Chen, Yang Li, P. Maris and X. Zhao,
Basis LightFront Quantization  Recent Progress and Future Prospects.
To appear in FewBody Syst.

Yang Li, V.A. Karmanov, P. Maris and J.P. Vary,
NonPerturbative Calculation of the Scalar Yukawa Theory in FourBody Truncation.
FewBody Syst. 56, 495 (2015); [arXiv:1411.1707 [nuclth]]

P. Wiecki, Yang Li, X. Zhao, P. Maris, J.P. Vary, Nonperturbative Calculation of the Positronium Mass Spectrum in
Basis LightFront Quantization. FewBody Syst. 56, 489 (2015); [arXiv:1502.02993 [nuclth]]

Yang Li, P.W. Wiecki, X. Zhao, P. Maris, J.P. Vary, Introduction to Basis LightFront Quantization Approach to QCD
Bound State Problems. Proc. Int. Conf. Nucl. Theor. Supercomputing Era (NTSE2013), Ames, IA, USA, May 1317, 2013. Eds. A.M. Shirokov
and A.I. Mazur. Pacific National University, Khabarovsk, Russia, 2014, p. 136; [arXiv:1311.2980 [nuclth]]

P.W. Wiecki, Yang Li, X. Zhao, P. Maris and J.P. Vary, Positronium in Basis LightFront Quantization. in Proc. Int. Conf.
Nucl. Theor. Supercomputing Era (NTSE2013), Ames, IA, USA, May 1317, 2013, edited by A.M. Shirokov and A.I. Mazur. Pacific
National University, Khabarovsk, 2014, p. 146; [arXiv:1311.2908 [nuclth]]

P. Maris, P. Wiecki, Yang Li, X. Zhao and J.P. Vary, Bound state calculations in QED and QCD using Basis LightFront
Quantization. Acta Phys. Polon. Supp., 6, p. 321 (2013)
Talks*:
 Basis LightFront Quantization Approach to Heavy Quarkonium. Contributed Talk at Baryons 2016, May 1620, Tallahassee, FL.
 Heavy Quarkonia on the Light Front.
Contributed Talk at the APS April Meeting 2016, April 1619, Salt Lake City, Utah.
 Quarkonium in a Holographic Basis.
Contributed Talk at the 2015 Fall Meeting of the APS Division of Nuclear Physics (DNP2015), 2015, Oct. 2831, Santa Fe, New Mexico.

Scalar Yukawa Model on the Light Front: ab initio approach to quantum field theory.
Contributed Talk at the APS April meeting 2015, Apr. 1114, Baltimore, Maryland.

NonPerturbative Calculation of Scalar Yukawa Theory in LightFront Dynamics. Invited Talk at the Light Cone 2014 (LC2014), May 2630, 2014, Raleigh, North Carolina.

Introduction to Basis Light Front Quantization Approach to QCD Bound State Problem.
Invited Talk at the International Conference on Nuclear Theory in the Supercomputing Era (NTSE2013), May 1317, 2013, Ames, Iowa
 2011  2015: Midwest Theory GetTogether (MWTGT), XXIV  XXVIII, Argonne National Lab, IL

Quarkonium in a holographic basis, XXVIII MWTGT, Sep. 1112, 2015.

Convergence of the Fock Sector Expansion in LightFront Hamiltonian Field Theory, XXVII MWTGT, Sep. 56, 2014.
 A Novel Basis for LightFront Quantum Field Theory, XXV MWTGT, Sep. 78, 2012.
 Calculation of BLFQ Hamiltonian Matrix Elements, XXIV MWTGT, Sep. 2324, 2011.
* All results in the slides are preliminary.
Honors and Awards:
Teaching:
 PHYS 221 Introduction to Classical Physics I, Section 14&15, Lab Section AM&AQ, as substitute recitation & Lab TA, 2016S
 PHYS 681&682 Quantum Field Theory I&II, as substitute lecturer, 2012F2013S
 PHYS 222 Introduction to Classical Physics I, section 25 & 36, as recitation TA, 2012F
 PHYS 112 General Physics, section 15, as recitation TA, 2011F
 PHYS 321 Introduction to Modern Physics I, as grader, 2011F
 PHYS 221 Lab Introduction to Classical Physics I, Section M DD K E & Y, as lab instructor, 2011S
 PHYS 112 Lab General Physics, Section F & G, as lab instructor, 2010F
 PHYS 101 Physics for the Nonscientist, as grader, 2010F
Advising:
 Mentor for three secondyear graduate students on LightFront Quantum Field Theory, 2015 Summer  present
Summer Schools:
 XXV National Nuclear Physics Summer School (NNPSS 2013), Stony Brook University, Long Island, New York (July 15  26, 2013)
Notes:
Programming:
 Specialty: Numerical Methods, High Performance Computing, Computational Physics (Configuration Interaction, Monte Carlo, Integral Equations, Complex Network)
 Languages:
 Proficient: C/C++, Fortran, MPI, OpenMP, Java
 Familiar: Python, HTML, Shell Script, Assembly Language
 Computational Tools: Mathematica, Arpack, Lapack, ScaLapack
 OS & Softwares: GNU/Linux (+OS X), Windows, VIM
Developments:
 colorsinglet.m
is a Mathematica package to compute the number of SU(3) color singlets from the number of quarks, antiquarks and gluons.
It is based on Young tableau.
Here is a list of the number of color singlets up to 10 particles (If a certain combination is absent, then the number of singlets is zero). q, a, g represent the number of quarks, antiquarks, and gluons, respectively.
 LightFrontSpinors.m
is a Mathematica package that defines the gamma matrices and spinors used in lightfront dynamics. See my notes,
Spinors on the light front for details.
Curriculum Vitae
Other Links: